HashMap 原理

HashMap 是Java集合框架中实现了 Map 接口的一个常用类。它提供了一种键值对的映射关系,并允许存储不重复的键和允许存储多个值。HashMap 是基于哈希表数据结构实现的,它提供了快速的插入、查找和删除操作

image-20230727201757816

HashMap 中,每个键(key)都唯一,并且与一个值(value)相关联。键(key)用于查找值(value),因此可以通过键(key)快速访问和修改对应的值(value)。不同于 List 接口的有序性,HashMap 是无序的,不保证键值对的顺序

HashMap 主要方法

  • V get(Object key): 返回与指定键关联的值,如果键不存在则返回null

  • V put(K key, V value): 将指定的键值对添加到 HashMap 中。如果该键已经存在,则更新对应的值,并返回旧值;如果该键不存在,则添加新的键值对,并返回null

  • V remove(Object key): 从 HashMap 中移除指定键对应的键值对,并返回对应的值。如果键不存在,则返回null

  • boolean containsKey(Object key): 检查 HashMap 中是否包含指定的键,如果包含则返回true,否则返回false

  • boolean containsValue(Object value): 检查 HashMap 中是否包含指定的值,如果包含则返回true,否则返回false

  • int size(): 返回 HashMap 中键值对的数量

  • boolean isEmpty(): 检查 HashMap 是否为空,如果为空则返回true,否则返回false

  • void clear(): 清空 HashMap 中的所有键值对

构造方法分析

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/** 构造方法 1 */
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}

/** 构造方法 2 */
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

/** 构造方法 3 */
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}

/** 构造方法 4 */
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}

HashMap 的构造方法:

  • HashMap(): 创建一个空的 HashMap,默认初始容量为16,负载因子为0.75

  • HashMap(int initialCapacity): 创建一个空的 HashMap,指定初始容量,负载因子为0.75

  • HashMap(int initialCapacity, float loadFactor): 创建一个空的 HashMap,指定初始容量和负载因子

  • HashMap(Map<? extends K, ? extends V> m): 创建一个包含指定映射m的 HashMap

初始容量、负载因子、阈值

一般情况下,都会使用无参构造方法创建 HashMap。但当我们对时间和空间复杂度有要求的时候,使用默认值有时可能达不到我们的要求,这个时候我们就需要手动调参。在 HashMap 构造方法中,可供我们调整的参数有两个,一个是初始容量 initialCapacity,另一个负载因子 loadFactor。通过这两个设定这两个参数,可以进一步影响阈值大小。但初始阈值 threshold 仅由 initialCapacity 经过移位操作计算得出。他们的作用分别如下:

名称 用途
initialCapacity HashMap 初始容量
loadFactor 负载因子
threshold 当前 HashMap 所能容纳键值对数量的最大值,超过这个值,则需扩容
1
2
3
4
5
6
7
8
9
10
/** The default initial capacity - MUST be a power of two. */
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;

/** The load factor used when none specified in constructor. */
static final float DEFAULT_LOAD_FACTOR = 0.75f;

final float loadFactor;

/** The next size value at which to resize (capacity * load factor). */
int threshold;

默认情况下,HashMap 初始容量是16,负载因子为 0.75。这里并没有默认阈值,原因是阈值可由容量乘上负载因子计算而来,即 threshold = capacity * loadFactor。但当你仔细看构造方法3时,会发现阈值并不是由上面公式计算而来,而是通过一个方法算出来的。这里也先不说明,后面在分析扩容方法时,再来解释这个问题。接下来,我们来看看初始化 threshold 的方法长什么样的的,源码如下:

1
2
3
4
5
6
7
8
9
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

详解如下

先来分析有关n位操作部分:先来假设n的二进制为01xxx…xxx。接着对n右移1位:001xx…xxx,再位或:011xx…xxx;对n右移2为:00011…xxx,再位或:01111…xxx;此时前面已经有四个1了,再右移4位且位或可得8个1。同理,有8个1,右移8位肯定会让后八位也为1。

综上可得,该算法让最高位的1后面的位全变为1,最后再让结果n+1,即得到了2的整数次幂的值了。由于int是32位,所以>>>16便能满足

现在回来看看第一条语句:

1
int n = cap - 1;

cap-1 再赋值给n的目的是另找到的目标值大于或等于原值。例如二进制1000,十进制数值为8。如果不对它减1而直接操作,将得到答案10000,即16,显然不是结果。减1后二进制为111,再进行操作则会得到原来的数值1000,即8。总结起来就一句话:找到大于或等于 cap 的最小2的幂

查找

HashMap 的查找操作比较简单,即先定位键值对所在的桶的位置,然后再对链表或红黑树进行查找。通过这两步即可完成查找,该操作相关代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}

final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
// 1. 定位键值对所在桶的位置
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
// 2. 如果 first 是 TreeNode 类型,则调用黑红树查找方法
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);

// 2. 对链表进行查找
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}

查找的核心逻辑是封装在 getNode 方法中的。先来看看查找过程的第一步 - 确定桶位置,其实现代码如下:

1
2
// index = (n - 1) & hash
first = tab[(n - 1) & hash]

这里通过 (n - 1)& hash 即可算出桶的在桶数组中的位置。因为 HashMap 中桶数组的大小 length 总是2的幂,此时,(n - 1) & hash 等价于对 length 取余。但取余的计算效率没有位运算高,所以使用了位运算 (n - 1) & hash

上面源码中,除了查找相关逻辑,还有一个计算 hash 的方法:

1
2
3
4
5
// 计算键的 hash 值
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

这样做有两个好处。计算余数时,由于 n 比较小,hash 只有低4位参与了计算,高位的计算可以认为是无效的。这样导致了计算结果只与低位信息有关,高位数据没发挥作用。为了处理这个缺陷,我们可以上图中的 hash 高4位数据与低4位数据进行异或运算,即 hash ^ (hash >>> 4)。通过这种方式,让高位数据与低位数据进行异或,以此加大低位信息的随机性,变相的让高位数据参与到计算中

在 Java 中,hashCode 方法产生的 hash 是 int 类型,32 位宽。前16位为高位,后16位为低位,所以要右移16位

上面所说的是重新计算 hash 的一个好处,除此之外,重新计算 hash 的另一个好处是可以增加 hash 的复杂度。当我们覆写 hashCode 方法时,可能会写出分布性不佳的 hashCode 方法,进而导致 hash 的冲突率比较高。通过移位和异或运算,可以让 hash 变得更复杂,进而影响 hash 的分布性。这也就是为什么 HashMap 不直接使用键对象原始 hash 的原因了

遍历

和查找一样,遍历操作也是大家使用频率比较高的一个操作。对于 遍历 HashMap,我们一般都会用下面的方式:

1
2
3
for(Object key : map.keySet()) {
// do something
}

或者

1
2
3
for(HashMap.Entry entry : map.entrySet()) {
// do something
}

一般都是对 HashMap 的 key 集合或 Entry 集合进行遍历。上面代码片段中用 foreach 遍历 keySet 方法产生的集合,在编译时会转换成用迭代器遍历,等价于:

1
2
3
4
5
6
Set keys = map.keySet();
Iterator ite = keys.iterator();
while (ite.hasNext()) {
Object key = ite.next();
// do something
}

在遍历 HashMap 的过程中会发现,多次对 HashMap 进行遍历时,遍历结果顺序都是一致的。但这个顺序和插入的顺序一般都是不一致的。遍历相关的代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
public Set<K> keySet() {
Set<K> ks = keySet;
if (ks == null) {
ks = new KeySet();
keySet = ks;
}
return ks;
}

// 键集合
final class KeySet extends AbstractSet<K> {
public final int size() { return size; }
public final void clear() { HashMap.this.clear(); }
public final Iterator<K> iterator() { return new KeyIterator(); }
public final boolean contains(Object o) { return containsKey(o); }
public final boolean remove(Object key) {
return removeNode(hash(key), key, null, false, true) != null;
}
// 省略部分代码
}

// 键迭代器
final class KeyIterator extends HashIterator
implements Iterator<K> {
public final K next() { return nextNode().key; }
}

abstract class HashIterator {
Node<K,V> next; // next entry to return
Node<K,V> current; // current entry
int expectedModCount; // for fast-fail
int index; // current slot

HashIterator() {
expectedModCount = modCount;
Node<K,V>[] t = table;
current = next = null;
index = 0;
if (t != null && size > 0) { // advance to first entry
// 寻找第一个包含链表节点引用的桶
do {} while (index < t.length && (next = t[index++]) == null);
}
}

public final boolean hasNext() {
return next != null;
}

final Node<K,V> nextNode() {
Node<K,V>[] t;
Node<K,V> e = next;
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (e == null)
throw new NoSuchElementException();
if ((next = (current = e).next) == null && (t = table) != null) {
// 寻找下一个包含链表节点引用的桶
do {} while (index < t.length && (next = t[index++]) == null);
}
return e;
}
//省略部分代码
}

如上面的源码,遍历所有的键时,首先要获取键集合 KeySet 对象,然后再通过 KeySet 的迭代器 KeyIterator 进行遍历。KeyIterator 类继承自 HashIterator 类,核心逻辑也封装在 HashIterator 类中。HashIterator 的逻辑并不复杂,在初始化时,HashIterator 先从桶数组中找到包含链表节点引用的桶。然后对这个桶指向的链表进行遍历。遍历完成后,再继续寻找下一个包含链表节点引用的桶,找到继续遍历。找不到,则结束遍历

插入

首先是先定位要插入的键值对属于哪个桶,定位到桶后,再判断桶是否为空。如果为空,则将键值对存入即可。如果不为空,则需将键值对接在链表最后一个位置,或者更新键值对

HashMap 是变长集合,所以需要考虑扩容的问题。其次,在 JDK 1.8 中,HashMap 引入了红黑树优化过长链表,这里还要考虑多长的链表需要进行优化

img

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
public V put(K key, V value) {
// 对key的hashCode()做hash
return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 初始化桶数组 table,table 被延迟到插入新数据时再进行初始化
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 如果桶中不包含键值对节点引用,则将新键值对节点的引用存入桶中即可,并对null做处理
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
// 如果键的值以及节点 hash 等于链表中的第一个键值对节点时,则将 e 指向该键值对
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;

// 如果桶中的引用类型为 TreeNode,则调用红黑树的插入方法
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
// 对链表进行遍历,并统计链表长度
for (int binCount = 0; ; ++binCount) {
// 链表中不包含要插入的键值对节点时,则将该节点接在链表的最后
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
// 如果链表长度大于或等于树化阈值(8),则进行树化操作
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}

// 条件为 true,表示当前链表包含要插入的键值对,终止遍历
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}

// 判断要插入的键值对是否存在 HashMap 中
if (e != null) { // existing mapping for key
V oldValue = e.value;
// onlyIfAbsent 表示是否仅在 oldValue 为 null 的情况下更新键值对的值
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
// 键值对数量超过阈值时,则进行扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}

插入操作的入口方法是 put(K,V),但核心逻辑在V putVal(int, K, V, boolean, boolean) 方法中。putVal 方法主要做了这么几件事情:

  1. 当桶数组 table 为空时,通过扩容的方式初始化 table
  2. 查找要插入的键值对是否已经存在,存在的话根据条件判断是否用新值替换旧值
  3. 如果不存在,则将键值对链入链表中,并根据链表长度决定是否将链表转为红黑树
  4. 判断键值对数量是否大于阈值,大于的话则进行扩容操作

扩容机制

扩容(resize)就是重新计算容量,向HashMap对象里不停的添加元素,而HashMap对象内部的数组无法装载更多的元素时,对象就需要扩大数组的长度,以便能装入更多的元素。当然Java里的数组是无法自动扩容的,方法是使用一个新的数组代替已有的容量小的数组,就像我们用一个小桶装水,如果想装更多的水,就得换大水桶

在详细分析之前,先来说一下扩容相关的背景知识:

在 HashMap 中,桶数组的长度均是2的幂,阈值大小为桶数组长度与负载因子的乘积。当 HashMap 中的键值对数量超过阈值时,进行扩容

HashMap 的扩容机制与其他变长集合的套路不太一样,HashMap 按当前桶数组长度的2倍进行扩容,阈值也变为原来的2倍(如果计算过程中,阈值溢出归零,则按阈值公式重新计算)。扩容之后,要重新计算键值对的位置,并把它们移动到合适的位置上去

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
// 如果 table 不为空,表明已经初始化过了
if (oldCap > 0) {
// 当 table 容量超过容量最大值,则不再扩容
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 按旧容量和阈值的2倍计算新容量和阈值的大小
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
} else if (oldThr > 0)
/*
* 初始化时,将 threshold 的值赋值给 newCap,
* HashMap 使用 threshold 变量暂时保存 initialCapacity 参数的值
*/
newCap = oldThr;
else {
/*
* 调用无参构造方法时,桶数组容量为默认容量,
* 阈值为默认容量与默认负载因子乘积
*/
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}

// newThr 为 0 时,按阈值计算公式进行计算
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
// 创建新的桶数组,桶数组的初始化也是在这里完成的
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
// 如果旧的桶数组不为空,则遍历桶数组,并将键值对映射到新的桶数组中
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
// 重新映射时,需要对红黑树进行拆分
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
// 遍历链表,并将链表节点按原顺序进行分组
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 将分组后的链表映射到新桶中
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}

上面的源码总共做了3件事,分别是:

  1. 计算新桶数组的容量 newCap 和新阈值 newThr
  2. 根据计算出的 newCap 创建新的桶数组,桶数组 table 也是在这里进行初始化的
  3. 将键值对节点重新映射到新的桶数组里。如果节点是 TreeNode 类型,则需要拆分红黑树。如果是普通节点,则节点按原顺序进行分组

newCap 和 newThr 计算过程,该计算过程对应 resize 源码的第一和第二个条件分支,如下:

1
2
3
4
5
6
7
8
9
10
11
12
// 第一个条件分支
if ( oldCap > 0) {
// 嵌套条件分支
if (oldCap >= MAXIMUM_CAPACITY) {...}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY) {...}
}
else if (oldThr > 0) {...}
else {...}

// 第二个条件分支
if (newThr == 0) {...}

通过这两个条件分支对不同情况进行判断,进而算出不同的容量值和阈值。它们所覆盖的情况如下:

分支一:

条件 覆盖情况 备注
oldCap > 0 桶数组 table 已经被初始化
oldThr > 0 threshold > 0,且桶数组未被初始化 调用 HashMap(int) 和 HashMap(int, float) 构造方法时会产生这种情况,此种情况下 newCap = oldThr,newThr 在第二个条件分支中算出
oldCap == 0 && oldThr == 0 桶数组未被初始化,且 threshold 为 0 调用 HashMap() 构造方法会产生这种情况。

这里把 oldThr > 0 情况单独拿出来说一下。在这种情况下,会将 oldThr 赋值给 newCap,等价于newCap = threshold = tableSizeFor(initialCapacity)。我们在初始化时传入的 initialCapacity 参数经过 threshold 中转最终赋值给了 newCap

嵌套分支:

条件 覆盖情况 备注
oldCap >= 230 桶数组容量大于或等于最大桶容量 230 这种情况下不再扩容
newCap < 230 && oldCap > 16 新桶数组容量小于最大值,且旧桶数组容量大于 16 该种情况下新阈值 newThr = oldThr << 1,移位可能会导致溢出

分支二:

条件 覆盖情况 备注
newThr == 0 第一个条件分支未计算 newThr 或嵌套分支在计算过程中导致 newThr 溢出归零

说完 newCap 和 newThr 的计算过程,接下来再来分析一下键值对节点重新映射的过程

在 JDK 1.8 中,重新映射节点需要考虑节点类型。对于树形节点,需先拆分红黑树再映射。对于链表类型节点,则需先对链表进行分组,然后再映射。需要的注意的是,分组后,组内节点相对位置保持不变

往底层数据结构中插入节点时,一般都是先通过模运算计算桶位置,接着把节点放入桶中即可。事实上,我们可以把重新映射看做插入操作。在 JDK 1.7 中,也确实是这样做的。但在 JDK 1.8 中,则对这个过程进行了一定的优化,逻辑上要稍微复杂一些

JDK1.8做了哪些优化。经过观测可以发现,我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。看下图可以明白这句话的意思,n为table的长度,图(a)表示扩容前的 key1 和 key2 两种 key 确定索引位置的示例,图(b)表示扩容后 key1 和 key2 两种 key 确定索引位置的示例,其中 hash1 是 key1 对应的哈希与高位运算结果。

img

元素在重新计算 hash 之后,因为n变为2倍,那么 n-1 的 mask 范围在高位多1bit(红色),因此新的 index 就会发生这样的变化:

img

因此,我们在扩充HashMap的时候,不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”,可以看看下图为16扩充为32的resize示意图:

img

这个设计确实非常的巧妙,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,因此resize的过程,均匀的把之前的冲突的节点分散到新的 bucket 了。这一块就是JDK1.8新增的优化点。有一点注意区别,JDK1.7中rehash的时候,旧链表迁移新链表的时候,如果在新表的数组索引位置相同,则链表元素会倒置,但是从上图可以看出,JDK1.8不会倒置

链表树化、红黑树链化与拆分

JDK 1.8 对 HashMap 实现进行了改进。最大的改进莫过于在引入了红黑树处理频繁的碰撞,代码复杂度也随之上升。比如,以前只需实现一套针对链表操作的方法即可。而引入红黑树后,需要另外实现红黑树相关的操作,而红黑树是一种自平衡的二叉查找树,本身就比较复杂

在展开说明之前,先把树化的相关代码贴出来:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
static final int TREEIFY_THRESHOLD = 8;

/**
* 当桶数组容量小于该值时,优先进行扩容,而不是树化
*/
static final int MIN_TREEIFY_CAPACITY = 64;

static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}
}

/**
* 将普通节点链表转换成树形节点链表
*/
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
// 桶数组容量小于 MIN_TREEIFY_CAPACITY,优先进行扩容而不是树化
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
// hd 为头节点(head),tl 为尾节点(tail)
TreeNode<K,V> hd = null, tl = null;
do {
// 将普通节点替换成树形节点
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null); // 将普通链表转成由树形节点链表
if ((tab[index] = hd) != null)
// 将树形链表转换成红黑树
hd.treeify(tab);
}
}

TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
return new TreeNode<>(p.hash, p.key, p.value, next);
}

在扩容过程中,树化要满足两个条件:

  1. 链表长度大于等于 TREEIFY_THRESHOLD
  2. 桶数组容量大于等于 MIN_TREEIFY_CAPACITY

第一个条件比较好理解,这里就不说了。这里来说说加入第二个条件的原因,个人觉得原因如下:

当桶数组容量比较小时,键值对节点 hash 的碰撞率可能会比较高,进而导致链表长度较长。这个时候应该优先扩容,而不是立马树化。毕竟高碰撞率是因为桶数组容量较小引起的,这个是主因。容量小时,优先扩容可以避免一些列的不必要的树化过程。同时,桶容量较小时,扩容会比较频繁,扩容时需要拆分红黑树并重新映射。所以在桶容量比较小的情况下,将长链表转成红黑树是一件吃力不讨好的事

回到上面的源码中,我们继续看一下 treeifyBin 方法。该方法主要的作用是将普通链表转成为由 TreeNode 型节点组成的链表,并在最后调用 treeify 是将该链表转为红黑树。TreeNode 继承自 Node 类,所以 TreeNode 仍然包含 next 引用,原链表的节点顺序最终通过 next 引用被保存下来

HashMap 在设计之初,并没有考虑到以后会引入红黑树进行优化。所以并没有像 TreeMap 那样,要求键类实现 comparable 接口或提供相应的比较器。但由于树化过程需要比较两个键对象的大小,在键类没有实现 comparable 接口的情况下,怎么比较键与键之间的大小了就成了一个棘手的问题。为了解决这个问题,HashMap 是做了三步处理,确保可以比较出两个键的大小,如下:

  1. 比较键与键之间 hash 的大小,如果 hash 相同,继续往下比较
  2. 检测键类是否实现了 Comparable 接口,如果实现调用 compareTo 方法进行比较
  3. 如果仍未比较出大小,就需要进行仲裁了,仲裁方法为 tieBreakOrder

tie break 是网球术语,可以理解为加时赛的意思,起这个名字还是挺有意思的。

通过上面三次比较,最终就可以比较出孰大孰小。比较出大小后就可以构造红黑树了

链表转成红黑树后,原链表的顺序仍然会被引用仍被保留了(红黑树的根节点会被移动到链表的第一位),我们仍然可以按遍历链表的方式去遍历上面的红黑树。这样的结构为后面红黑树的切分以及红黑树转成链表做好了铺垫

红黑树拆分

扩容后,普通节点需要重新映射,红黑树节点也不例外。按照一般的思路,我们可以先把红黑树转成链表,之后再重新映射链表即可。这种处理方式是大家比较容易想到的,但这样做会损失一定的效率。如上节所说,在将普通链表转成红黑树时,HashMap 通过两个额外的引用 next 和 prev 保留了原链表的节点顺序。这样再对红黑树进行重新映射时,完全可以按照映射链表的方式进行。这样就避免了将红黑树转成链表后再进行映射,无形中提高了效率

以上就是红黑树拆分的逻辑,下面看一下具体实现吧:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
// 红黑树转链表阈值
static final int UNTREEIFY_THRESHOLD = 6;

final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
TreeNode<K,V> b = this;
// Relink into lo and hi lists, preserving order
TreeNode<K,V> loHead = null, loTail = null;
TreeNode<K,V> hiHead = null, hiTail = null;
int lc = 0, hc = 0;
/*
* 红黑树节点仍然保留了 next 引用,故仍可以按链表方式遍历红黑树。
* 下面的循环是对红黑树节点进行分组,与上面类似
*/
for (TreeNode<K,V> e = b, next; e != null; e = next) {
next = (TreeNode<K,V>)e.next;
e.next = null;
if ((e.hash & bit) == 0) {
if ((e.prev = loTail) == null)
loHead = e;
else
loTail.next = e;
loTail = e;
++lc;
}
else {
if ((e.prev = hiTail) == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
++hc;
}
}

if (loHead != null) {
// 如果 loHead 不为空,且链表长度小于等于 6,则将红黑树转成链表
if (lc <= UNTREEIFY_THRESHOLD)
tab[index] = loHead.untreeify(map);
else {
tab[index] = loHead;
/*
* hiHead == null 时,表明扩容后,
* 所有节点仍在原位置,树结构不变,无需重新树化
*/
if (hiHead != null)
loHead.treeify(tab);
}
}
// 与上面类似
if (hiHead != null) {
if (hc <= UNTREEIFY_THRESHOLD)
tab[index + bit] = hiHead.untreeify(map);
else {
tab[index + bit] = hiHead;
if (loHead != null)
hiHead.treeify(tab);
}
}
}

从源码上可以看得出,重新映射红黑树的逻辑和重新映射链表的逻辑基本一致。不同的地方在于,重新映射后,会将红黑树拆分成两条由 TreeNode 组成的链表。如果链表长度小于 UNTREEIFY_THRESHOLD,则将链表转换成普通链表。否则根据条件重新将 TreeNode 链表树化

红黑树链化

前面说过,红黑树中仍然保留了原链表节点顺序。有了这个前提,再将红黑树转成链表就简单多了,仅需将 TreeNode 链表转成 Node 类型的链表即可。相关代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
final Node<K,V> untreeify(HashMap<K,V> map) {
Node<K,V> hd = null, tl = null;
// 遍历 TreeNode 链表,并用 Node 替换
for (Node<K,V> q = this; q != null; q = q.next) {
// 替换节点类型
Node<K,V> p = map.replacementNode(q, null);
if (tl == null)
hd = p;
else
tl.next = p;
tl = p;
}
return hd;
}

Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
return new Node<>(p.hash, p.key, p.value, next);
}

到此扩容相关内容结束

删除

如果大家坚持看完了前面的内容,到本节就可以轻松一下。当然,前提是不去看红黑树的删除操作。不过红黑树并非本文讲解重点,本节中也不会介绍红黑树相关内容,所以大家不用担心。

HashMap 的删除操作并不复杂,仅需三个步骤即可完成。第一步是定位桶位置,第二步遍历链表并找到键值相等的节点,第三步删除节点。相关源码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}

final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
// 1. 定位桶位置
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
// 如果键的值与链表第一个节点相等,则将 node 指向该节点
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
// 如果是 TreeNode 类型,调用红黑树的查找逻辑定位待删除节点
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
// 2. 遍历链表,找到待删除节点
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}

// 3. 删除节点,并修复链表或红黑树
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}

删除操作本身并不复杂,有了前面的基础,理解起来也就不难了,这里就不多说了。

其他细节

被 transient 所修饰 table 变量

如果大家细心阅读 HashMap 的源码,会发现桶数组 table 被申明为 transient。transient 表示易变的意思,在 Java 中,被该关键字修饰的变量不会被默认的序列化机制序列化。我们再回到源码中,考虑一个问题:桶数组 table 是 HashMap 底层重要的数据结构,不序列化的话,别人还怎么还原呢?

这里简单说明一下吧,HashMap 并没有使用默认的序列化机制,而是通过实现 readObject/writeObject 两个方法自定义了序列化的内容。这样做是有原因的,试问一句,HashMap 中存储的内容是什么?不用说,大家也知道是 键值对 。所以只要我们把键值对序列化了,我们就可以根据键值对数据重建 HashMap。有的朋友可能会想,序列化 table 不是可以一步到位,后面直接还原不就行了吗?这样一想,倒也是合理。但序列化 talbe 存在着两个问题

  1. table 多数情况下是无法被存满的,序列化未使用的部分,浪费空间
  2. 同一个键值对在不同 JVM 下,所处的桶位置可能是不同的,在不同的 JVM 下反序列化 table 可能会发生错误

以上两个问题中,第一个问题比较好理解,第二个问题解释一下。HashMap 的get/put/remove等方法第一步就是根据 hash 找到键所在的桶位置,但如果键没有覆写 hashCode 方法,计算 hash 时最终调用 Object 中的 hashCode 方法。但 Object 中的 hashCode 方法是 native 型的,不同的 JVM 下,可能会有不同的实现,产生的 hash 可能也是不一样的。也就是说同一个键在不同平台下可能会产生不同的 hash,此时再对在同一个 table 继续操作,就会出现问题

综上所述,大家应该能明白 HashMap 不序列化 table 的原因了

线程不安全

HashMap 的实现是非线程安全的,如果在多线程环境下使用,可以考虑使用 ConcurrentHashMap来代替。另外,需要注意的是,HashMap中的键必须实现正确的hashCode()equals()方法,以确保正确的映射和查找行为

总结

本章对 HashMap 常见操作相关代码进行了详细分析,并在最后补充了一些其他细节。在本章中,插入操作一节的内容说的最多,主要是因为插入操作涉及的点特别多,一环扣一环。包含但不限于“table 初始化、扩容、树化”等,总体来说,插入操作分析起来难度还是很大的。好在,最后分析完了。

本章篇幅虽比较大,但仍未把 HashMap 所有的点都分析到。比如,红黑树的增删查等操作。当然,我个人看来,以上的分析已经够了。毕竟大家是类库的使用者而不是设计者,没必要去弄懂每个细节。所以如果某些细节实在看不懂的话就跳过吧,对我们开发来说,知道 HashMap 大致原理即可

参考:https://segmentfault.com/a/1190000012926722


HashMap 原理
https://sugayoiya.github.io/posts/48481.html
作者
Sugayoiya
发布于
2021年6月22日
许可协议